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Recen t ly  the re  has b e e n  g rowing  in teres t  in the  h y d r a u l i c  res is tance  

and the k i n e m a t i c s  of nons t eady  f low.  

One of the first  a t t empt s  to e v a l u a t e  the e f f ec t  of nonsteadiness  

on the v e l o c i t y  s t ruc ture  of a s t r eam was the  inves t iga t ion  by V. V. 

Vedern ikov  and  V. A. Arkhange l ' sk i i  [1] .  

The  v e l o c i t y  s t ructure  of nons teady  f low was s tudied  in  de t a i l  by  

G.  F.  Fedorov .  He,  in  p a r t i c u l a r ,  es tab l i shed  [2], t ha t  the t r an s l a t i ona l  

v e l o c i t y  a t  the  f r ee  sur face  m a y  turn out  to be  less than  wi th in  the  

s t r eam.  An e x p l a n a t i o n  of this is g i v e n  be low.  

Paper  [3] con ta ins  a n  inves t iga t ion  of the e f f e c t  of nonsteadiness  

on the  shear ing  stress. In it the  fo l lowing  assumpt ions  were  made :  

(1) the  v e l o c i t y  curves  for un i fo rm  and  nons t eady  f low are  s imi la r ,  

(2) the  shear ing  stresses for un i fo rm and  nons t eady  f low are  the s a m e  

at  the b o t t o m  of the s t r e a m .  

These  assumpt ions  are  not  m a d e  here .  The shear ing  stress and 

v e l o c i t y  curves for  the  nons t eady  m o t i o n  of an  open  p l a n e - p a r a l l e l  

t u rbu len t  s t r eam of f lu id  were  i nves t i ga t ed  in  an  a p p r o x i m a t e  w a y  

wi th in  the f r a m e w o r k  of the assumpt ions  m a d e  in [4] .  

w F r i c t i ona l  stress. The  f low of a n  open  p l a n e - p a r a l l e l  t u rbu len t  

s t r eam of  f luid is cons ide red  for  l a r g e  Reynolds numbers  and a sma l l  

t ransverse  c o m p o n e n t  of a c c e l e r a t i o n .  We then  h a v e  the equa t ions  [4] 

aT~ + ~ 0 ~  + ~ ~ = _ 0 y  g { ~  ~o~ e -  ~in ~)  + ~ 0r , 

Ou , Ov 0 (1.1) ~ - ~ =  , 

and the b o u n d a r y  condi t ions  

O h / O r  q- u O h / O x  = v, r = 0 for y = h; 

u = 0 ,  v = 0  for y = 0 .  (1 .2)  

Here  t is t ime ,  x and  y are  r e c t a n g u l a r  Ca r t e s i an  coord ina tes ,  

wi th  the x - a x i s  in the d i r ec t ion  of the  r e c t i l i n e a r  b o t t o m  of the s t ream,  

u and v are v e l o c i t y  c o m p o n e n t s  i n t h e  d i r ec t ion  of the x-  and  y - a x e s ,  

r e spec t ive ly ,  h is the depth ,  T is the f r i c t ion  stress, p is the densi ty ,  

g is the a c c e l e r a t i o n  of g rav i ty ,  ~ is the  ang le  of i n c l i n a t i o n  of the 

b o t t o m  to the ho r i zon t a l  ( t a k e n  to b e  pos i t ive) .  To c o m p l e t e  sys tem 

(1.1),  add i t i ona l  cons idera t ions  are  necessary ,  such as the re la t ions  

of the s e m i e m p i r i c a l  theory  of tu rbu lence  wh ich  are  g i v e n  in [4] .  

We now represen t  the  ra t io  of the  f r i c t ion  stress r a t  some poin t  in 

the s t ream to the f r i c t ion  stress r 0 at  the  b o t t o m  of the s t r eam in the 

fo rm of a p o l y n o m i a l  of degree  ~ = y / h .  The  coe f f i c i en t s  of the 

p o l y n o m i a l  

r / "~o = bo @ b N  -t- b2vl2 -{- ".. -}- bn'q n (0 ~ TI ~ l) 

c a n  be  d e t e r m i n e d  f rom ( 1 . t )  and (1 .2) .  Here ,  as in [4], we conf ine  

ourselves  to the s imples t ,  o n e - p a r a m e t e r  case ,  wh ich  corresponds to a 

p o l y n o m i a l  wi th  th ree  terms;  fur ther  inc rease  in the number  of  t e rms  

in the p o l y n o m i a l  in t roduces  new nonsteadiness  p a r a m e t e r s .  

To  d e t e r m i n e  the coe f f i c i en t s  b0, hi,  and  b 2 we star t  f rom the 

condi t ions :  
(a)  a t  the b o t t o m  where  ~] = 0 

T / % = I ,  

(b) a t  the b o t t o m  where  + = 0 

0r ) 0 y ~  pg c o s @ - - s i n @  , 

0 �9 - ~ ( ~ o s ~ - ~ i .  ~? = A 
or 0~1 ~0 ro \0~ / 

(c)  at  the f ree  sur face  where  T/ = 1 

x / %  = 0. 

We then  h a v e  

/ r 0 = l + A n - - ( l + A )  n 2 ( 0 < n < t ) .  (1.a) 

In the  case  of un i fo rm s teady  m o t i o n  0u/Ot = O and 8u/Ox = 0, and 

f rom the second  e q u a t i o n  of (1 .1)  we have  v = 0. In teg ra t ion  of the  

first  e q u a t i o n  of (1 .1 )  wi th  respec t  to y f rom 0 to h y ie lds  A = - -1  in 

this ca se .  

Y 

t7 l ~-o 

F ig .  1 

Thus r / r 0  = 1 -- r7 in the  case  of un i fo rm s teady  mo t ion .  

We now in t eg ra t e  the first  equa t ion  of (1 .1)  wi th  respec t  to y f rom 

0 to h by  m e a n s  of  the  second equa t ion  of (1.1)  and cond i t ions  (1.2) .  

We then h a v e  

h h 
~ = 

0 0 

In t roduc ing  the  a v e r a g e  v e l o c i t y  w and  r e m e m b e r i n g  tha t  u = w + 

+ Au, we ob t a in  

h 

m 

0 

It is now c l e a r  tha t  dev ia t ions  of p a r a m e t e r  A f rom the va lue  --1 

are  due to the nons teady  na tu re  of f low.  C lea r ly ,  for a c c e l e r a t e d  

m o t i o n  6 < 0 or A < - -1 .  

We cons ider  (1 .3)  for  some values  of x and t ( pa r ame te r s ) .  We 

have  f rom (1 .3)  

x ~  ~  I = A - -  2 (l + A )  ~1, 

r o ' = d ~ x  ~  ~ = - 2  (t + A )  (r ~  (1.4) 

1.1 .  Let 6 < 0 ( a c c e l e r a t e d  f low).  In this case ,  in a c c o r d a n c e  

with (1.4), we obtain 

~~ = - -  t -}- 6( t - -2~1) ,  "~~ = - - 2 6 ~ 0 .  

(1)  The  ca se  of - - 1 <  5 <  0. He re  r ~ < 0 and r ~ > 0. Conse -  

q u e n t l y ,  the  v a l u e  of  r"01) dec reases  m o n o t o n i c a l l y  as 71 increases ,  and 

the  cu rve  for  r~ is c o n v e x  downward .  It fo l lows f rom this  tha t  r~(~) < 

< r~(~) for a l l  va lues  of ~ in the  in t e rva l  0 < 71 < 1, where  7~(~) is 

r~ for un i fo rm m o t i o n  (5 = 0). 

(2) The case  of 5 < - - 1 .  He re  r ~ < 0 for 0 -<~ < ~* (~* = ( 1  -- 

-- 1 /6 ) /2 ) ,  r ~ > 0 for ~* < N--< 1, and  r ~ = 0  at the po in t  7? = ~ * ,  
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r ~ > O, i.e., the function r~ decreases monotonical ly from unity 
for 71 = 0, and reaches a min imum for 71 = ~*. It subsequently increases 
monotonically to 0 for ~ = 1, and the curve for r~ is convex 
downward. 

5 4 2 J // 
o 

Fig. 2 

1.2. Let 6 > O (retarded flow). The following conclusions can 
then be arrived at in the same way. 

( l )  For 0 < 5 < 1 the value of T~ decreases monotonical ly as 
increases, and the curve for T~ is convex upward (r~ > r~(~) for 
all vaines of ~ in the interval 0 < 71 < 1). 

(2) For 5 > 1 the function T~ increases mon0tonically from 
unity for ~ = 0, and reaches a max imum for ~ = 77*. It then decreases 
monotonically to 0 for 71 = 1. 

The distribution of shearing stress r~ is given in Fig. 1 where 
the curves correspond to the following values of 5: 

6 4 1 2 3 
8 < - - L  - - i < 8 < 0 ,  8 = 0 ,  0 < 6 < 1 ,  i < 8 .  

w Velocity profile. According to [4], the velocity profile corre-  
sponding to the approximation of frictional stress, given by (1.3), 
satisfies the equation 

O u ~  = (t + A) + 1#1 (a ~ = a u l u . ,  ,,o ~ = a u o l u . ) .  (2.1) 

where u ~ = u~ for ~1 = 1 is taken as the boundary condition. Here ct is 
the first turbulence constant, and u 0 = u for ~l = 1. 

We note that, close to the bottom, viscous friction, which was not 
allowed for in (2.1), becomes important.  Accordingly, (2.1) does 
not yield u ~ = 0 right at the bottom as it should, but rather u ~ = --r162 
Equation (2.1) is analyzed below in the interval 0 -< 11 "< 1. The results 
of the analysis are valid, of course, only in the region of values of 
which excludes the region in the immediate  vicinity of the bottom. 

As in w we consider (2.1) for fixed values of x and t. Then 
we have from (2.1) 

u o'' = d~u o / d ~  = - -  1 / ~ < 0 .  (2.2) 

2.1. Let 6 < O (accelerated flow). Then, in accordance with 
(2.1) and (2.2), we obtain u ~ = du~ = 5 + 1/~ and u ~ < 0. The 
following conclusions can then be drawn without difficulty. 

(1) For - 1  < 5 < 0 the value of u~ increases monotonically 
as ~ increases, and the curve for u~ is convex upward. 

(2) For --~ < 5 < --I the function u~ increases monotonically 

as ~7 increases, reaches a maximum at the point ~ = --1/6, and then 

decreases monotonically. 

2.2. let 5 > O (retarded motion). Then u ~ > 0 and u ~ < 0. Con- 

sequently, the function u~ increases monotonical ly as ~ increases. 
for all values of ~, and the curve for u~ is convex upward, 

Thus, we have u~ < u~ < u~ ' and uS" = u~" = u'." < 0 for any ~l. 
Here the subscripts +, e,  and -- denote accelerated, uniform, and 
retarded flow, respectively. 

Treating the phenomenon as in [4], we set U0lk) = t~u., where 7lk = 
= k / h ,  13 is the second turbulence constant, and k is the mean  height 
at which the roughness projections make themselves felt.  The velocity 
profile u~ is given for the same depth in Fig. 2 (the symbols are the 
same as those in Fig. 1). It is clear from this, first, that we can speak 
about the similarity of velocity profiles for nonsteady and uniform 
flow only for the case in which 151 < 1, and second, that u~ < u~ < u l  
for all values of ~ in the interval 7/k < ~ -< 1, in particular 

o o e 

%+ < u0c < % .  (2.3) 

Inequalities (2.3) can also be obtained directly from the expression 
for the velocity profile resulting from (2.1). It follows from (2.3) that 

%+ / u,+ < uo~ / u,~ < %_ / ~,_ . (2.4) 

Inequalities (2.4) mean  that for the same longitudinal velocity at 
the free surface and for the same depth, the fictional stress at the 
bottom is greater for accelerated motion than for uniform motion,  and 
less for retarded motion than for uniform motion.  

Thus, the basic characteristics of nonsteady flow can differ sub- 
stantially from the characteristics of uniform flow, especially when 
[51 > 1. In particular, when J51 > 1, the max imu m value of the 
longitudinal velocity for accelerated flow occurs somewhere inside 
the flow. The possibility of shifting the velocity max imu m to inside 
the stream for nonsteady flow has been shown experimental ly [2]. 
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