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THE EFFECT OF NONSTEADINESS ON THE SHEARING STRESS AND VELOCITY PROFILE OF AN
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Recently there has been growing interest inthe hydraulic resistance
and the kinematics of nonsteady flow.

One of the first attempts to evaluate the effect of nonsteadiness
on the velocity structure of 2 stream was the investigation by V.V,
Vedernikov and V. A. Arkhangel'skii [1].

The velocity structure of nonsteady flow was studied in detail by
G. F.Fedorov. He, in particular, established [2], that the translational
velocity at the free surface may twrn out to be less than within the
stream. An explanation of this is given below,

Paper [3] contains an investigation of the effect of nonsteadiness
on the shearing stress. In it the following assumptions were made:
(1) the velocity curves for uniform and nonsteady flow are similar,
(2) the shearing stresses for uniform and nonsteady flow are the same
at the bottom of the stream.

These assumptions are not made here. The shearing stress and
velocity curves for the nonsteady motion of an open plane-parallel
turbulent stream of fluid were investigated in an approximate way
within the framework of the assumptions made in [4].

§1, Frictional stress. The flow of an open plane-parallel turbulent
stream of fluid is considered for large Reynolds numbers and a small
transverse component of acceleration. We then have the equations [4]
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and the boundary conditions
Oh/dt +udh/dx=v, T=0 for y==r;
u=20 v=20 for ¥y = 0. (1.2)

Here 1t is time, x and y are rectangular Cartesian coordinates,
with the x-axis inthe direction of the rectilinear bottom of the stream,
u and v are velocity components inthe direction of the x- and y-axes,
respectively, h is the depth, 7 is the friction stress, p is the density,
g is the acceleration of gravity, & is the angle of inclination of the
bottom to the horizontal (taken to be positive). To complete system
(1.1), additional considerations are necessary, such as the relations
of the semiempirical theory of turbulence which are given in [4].

We now represent the ratio of the friction stress 7 at some point in
the stream to the friction stress 7y at the bottom of the stream in the
form of a polynomial of degree 1 =y/h. The coefficients of the
polynomial
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can be determined from (1.1) and (1.2). Here, as in [4], we confine
ourselves to the simplest, one~parameter case, which corresponds to a
polynomial with three terms; further increase in the number of terms
in the polynomial introduces new nonsteadiness parameters.

To determine the coefficients by, by, and b, we start from the
conditions:

(a) at the bottom where n =0
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(b) at the bottom where n =0
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(c) at the free surface where n =1
T/ 1 = 0.
We then have

T =14+Adn— (LA O, (1.3)

In the case of uniform steady motion du/dt = 0 and du/0x = 0, and
from the second equation of (1.1) we have v = 0. Integration of the

first equation of (1.1) with respect to y from 0 to h yields A = —1 in
this case.
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Thus /7y = 1 — 1 in the case of uniform steady motion.

We now integrate the first equation of (1.1) with respect to y from
0 to h by means of the second equation of (1.1) and conditions (1.2).
We then have
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Introducing the average velocity w and remembering that u =w +
+ Au, we obtain
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It is now clear that deviations of parameter A from the value —1
are due to the nonsteady nature of flow. Clearly, for accelerated
motion 6 < 0 or A <—1,

We consider (1.3) for some values of x and t (parameters). We
have from (1.3)

™ =dt°/dn=A—2(1 +A4) 1,

T @ dpt = — 2 (1 4 A) (=T T). (1.4)

1.1. Let & < 0 (accelerated flow). In this case, in accordance
with (1.4), we obtain

™ =—14+8(1-2n), 1°" =—20>0.

(1) The case of =1 < 6< 0, Here 7 < 0 and 7°" > 0, Conse-
quently, the value of 7°() decreases monotonically as n increases, and
the curve for T°%(n) is convex downward, It follows from this that T%(n) <
< To(n) for all values of 7 in the interval 0 < 1 < 1, where 75(n) is
7°(n) for uniform motion (6 = 0).

(2) The case of 6 < —1, Here 7" < 0 for 0 =g <n* (n*=(1 —
~1/8)/2), ™ >0 for n¥ < =1, and 7' =0 at the point n =75%,
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" > 0, i.e., the function 7°(n) decreases monotonically from unity
forn = 0, and reaches a minimum for 7 = n*. It subsequently increases
monotonically to 0 for =1, and the curve for 7°(n) is convex
downward.
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1.2, Let § > 0 (retarded flow). The following conclusions can
then be arrived at in the same way.

(1) For 0 < & < 1 the value of °(5) decreases monotonically as 7
increases, and the curve for 7°(n) is convex upward (7°(n) > 7¢(n) for
all values of n in the interval 0 < 57 < 1).

(2) For 6 > 1 the function 7°(y) increases monotonically from
unity for 7 = 0, and reaches a maximum for 7 =n*, It then decreases
monotonically to 0 for ¢ =1,

The distribution of shearing stress 7°(n) is given in Fig. 1 where
the curves correspond to the following values of &:

5 4 1 2 3
§<—1, —1<8L0, 8=0, 0<6<1, 18,

§2. Velocity profile. According to [4], the velocity profile corre-
sponding to the approximation of frictional stress, given by (1.3),
satisfies the equation

ullon = (1 + 4) + 1/ (u° = aulug, 1 =auylu,), (2.1)
where u® = ug for n = 1 is taken as the boundary condition, Here o is
the first turbulence constant, and uy = u for n = 1,

We note that, close to the bottom, viscous friction, which was not
allowed for in (2.1), becomes important., Accordingly, (2.1) does
not yield u® = 0 right at the bottom as it should, but rather u® = —e,
Equation (2.1) is analyzed below in the interval 0 =g = 1, The results
of the analysis are valid, of course, only in the region of values of 5
which excludes the region in the immediate vicinity of the bottom.

As in §1, we consider (2.1) for fixed values of x and t. Then
we have from (2.1)

u’ = d%l/dnt = — 1Nt <0, (2.2)

2.1, Let 6 < 0 (accelerated flow), Then, in accordance with
(2.1) and (2.2), we obtain u®’ = du®/dn =6 + 1/9 and u’" < 0. The
following conclusions can then be drawn without difficulty,

(1) For —1 < 6 < 0 the value of u%n) increases monotonically
as n increases, and the curve for u®n) is convex upward,

(2) For —w < § < —1 the function u’(n) increases monotonically
as 71 increases, reaches a maximum at the point 1 = -1/8, and then
decreases monotonically.

2,2, Let & > 0 (retarded motion). Then u** > 0 and u*" < 0, Con-
sequently, the function u°(n) increases monotonically as n increases,
for all values of i, and the curve for u’(n) is convex upward,

Thus, we have uf < ug < u2 and uj" =uy’ =u < 0 for any 7.
Here the subscripts +, ¢, and — denote accelerated, uniform, and
retarded flow, respectively.

Treating the phenomenon as in [4], we set u(ng) = Bus, where g =
= k/h, B is the second turbulence constant, and k is the mean height
at which the roughness projections make themselves felt, The velocity
profile u°(n) is given for the same depth in Fig. 2 (the symbols are the
same as those in Fig. 1). It is clear from this, first, that we can speak
about the similarity of velocity profiles for nonsteady and uniform
flow only for the case in which |6] < 1, and second, that u% < ud < ud
for all values of 7 in the interval ny < 1 = 1, in particular

gy < e < Uy - (2.3)

Inequalities (2.3) can also be obtained directly from the expression
for the velocity profile resulting from (2.1). It follows from (2.3) that

Yo / u*+ < uOc/ "gc < uO—/ u#" * (2'4)

Inequalities (2.4) mean that for the same longitudinal velocity at
the free surface and for the same depth, the fictional stress at the
bottom is greater for accelerated motion than for uniform motion, and
less for retarded motion than for uniform motion.

Thus, the basic characteristics of nonsteady flow can differ sub-
stantially from the characteristics of uniform flow, especially when
[8] > 1. In particular, when |§]| > 1, the maximum value of the
longitudinal velocity for accelerated flow occurs somewhere inside
the flow. The possibility of shifring the velocity maximum to inside
the stream for nonsteady flow has been shown experimentally [2].
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